1.数字经济已经成为我国经济发展重要推动力,本质是伴随着信息技术发展进行的下一轮经济革命
数字经济,即以数据资源为键要素,以现代信息网络为主要载体,以信息通信技术融合应用、全要素数字化转 型为重要推动力,促进公平与效率更加统一的新经济形态。数字经济与其他经济形式最大的不同在于数字经济是以数据作为核心生产要素,不 同经济形态下,数据对于全要素生产力的提升作用有区别。
伴随着人类社会不断发展,不同阶段各种生产要素的重要程度逐渐变化:农业经济:首先要解决吃饭的问题,最核心的生产要素主要涉及土地和劳动力;工业经济:解决的是大规模生产的问题,在土地和劳动力之上增加了最主要的 资本要素,同时技术、管理等软性要素重要程度不断提升;数字经济:目标是解决大规模生产过程中生产过剩、供需错配问题,数据成为 更为重要的生产要素,提升全社会要素生产力。
1.2.数字经济分类:数字产业化、产业数字化、数据价值化、数字化治理
国家统计局在《数字经济及其核心产业统计分类》中对数字经济的定义,数字经济 行业主要包括:数字产品制造业、数字产品服务业、数字技术应用业、数字要素驱 动业、数字化效率提升业五大类,涵盖上百个国民经济行业。
数字经济作为与信息通信技术高度相关的经济形式,发达国家在此布局较早,已经 成为驱动领先国家发展的主要驱动力。
(2019)、《创新与竞争法 案》(2021)年,一再强调数字经济在其经济发展中的重要作用。在欧洲,欧盟正式 具备国际法主体资格后也不断开始进行数字经济相关方面的政策探索,即 2014 年 提出《数据价值链战略计划》后,又陆续推出《欧洲工业数字化战略》、《欧盟人工 智能战略》等规划;2021 年 3 月发布了《2030 数字化指南:实现数字十年的欧洲路 径》,全面规划从 2021 年到 2030 年的数字化发展路径。但从发展策略角度看,欧美发展路径不尽相同:美国强调资本力量,保持绝对的技 术领先,吸收全球力量维持自身领先优势;而欧洲更强调公平共享,从欧盟层面希 望通过数据推动形成单一市场。
一,而我国各级决策部 门也已经把数字经济作为未来经济发展中重要方向做布局,顶层规划设计更强调整 体结构和创新技术方向,基层规划更注重实际落地方向和指标设计。
1.4.数字经济意义:信息技术和数据发展到一定程度后进行的下一轮产业革命
数字经济本质是伴随着信息技术发展进行的下一轮经济革命,我们认为数字经济对 于我国来讲,其意义体现在四方面:1、提升传统行业生产效率/社会治理效率:通过信息技术与传统行业的结合,提升传统行业生产效率,进一步挖掘传 统行业价值和潜能;相关研究表明,采用产品全生命周期管理系统的企业研发周期降低 17%, 产能利用率提升 16%,设备利用率提升 10%;世界经济论坛研究表明,数 字化程度每提高 10%,人均 GDP 将增长 0.5%至 0.62%。
2、从“中国制造”变为“中国智造”,增强国际经济竞争力:“中国制造”通过几十年努力已经成为物美价廉的代名词,但目前我们还 存在高端产品能力不足、存量市场空间有限的情况;通过数字经济赋能传统经济,“中国制造”升级成“中国智造”,同时向外输 出我国数字产品,创造更大的市场空间。
3、从依赖土地的经济发展模式转变为多种经济要素协同发展的模式:过去数十年,我国的经济发展本质上是围绕土地生产要素和资本生产要素做 的一系列生产力释放,包括基建、房地产、可选消费等等;随着城镇化率提 升速度越来越慢、共同富裕的社会主义本质要求下,传统的土地要素、资本 要素对于经济的边际促进作用已经越来越小;展望未来,我国必须通过依托数字手段提升制造业全要素生产效率,从单纯 的依赖土地、资本发展向以数据为核心的数字经济转变;
4、打通历史周期论中供需不平衡的经济循环:市场经济的一大症结在于生产资料私有化和生产活动的社会化造成的周期 性供需不匹配;计划经济试图通过全面计划熨平这一周期症结,但局限于技 术和数据发展落后无法做到;数字经济通过对传统经济赋能改善全社会供需;a) 供给方面:大幅提升生产制造、经营管理、商贸流通等环节效率,挖掘 供给潜力,实现按需、高效供给;举例:C2M 生产;b) 需求方面:最大程度挖掘内需潜力,消化吸收现有产能,带动产业升 级;举例:直播带货;c) 供需平衡:有效打通供需数据匹配,提高经济系统快速反应能力和整 体协同能力;
数字经济规模庞大种类繁多,实际上从投资角度来讲,可以根据行业发展的不同阶 段拆成一个个细分行业做基本面投资和主题投资。结合行业生命周期和投资角度,我们认为数据要素相关领域是唯一一个几乎完全没 有被认知的领域,可能是整个行业下一个板块性大机会
2.数据要素行业简介
目前对于数据、数据资源和数据要素没有特别权威公认的定义,我们参考中国信通 院定义,将数据要素定义为参与社会生产经营活动、为使用者或所有者带来经济效 益的数据资源。数据:对客观事物(如事实、事件、事物、过程或思想)的数字化记录或描述,是 无序的、未经加工处理的原始素材;数据资源:能够参与社会生产经营活动、具备使用价值、以电子方式记录的数据;数据资产/数据要素:参与社会生产经营活动、为使用者或所有者带来经济效益的数 据资源;数据资产偏重形而下的会计概念,数据要素偏重形而上的经济概念。
2.2.数据要素特征:非稀缺性、非均质性、非排他性,资产化过程中面临很多困难
数据要素作为一种新型生产要素,其与其他生产要素相同的部分,同时也有其独特 的特征;数据要素的独特特征使其在经济学研究和实际使用中有各种新问题出现。目前学术界和产业界普遍认为,与其他生产要素相比,数据要素具有非稀缺性、非 均质性、非排他性。
2.3.数据要素发展现状:海外积极探索,国内基于大数据市场发展曲折前进
数据作为新时代的“石油”,各国均采用了各种方式进行积极探索,其中美国与韩国 是进展最为靠前的国家。目前看来美国已经形成了较为成熟的数据要素市场,韩国 也在探索基于 Mydata 模式的个人隐私数据保护模式。我国对于数据的要素化认知并非一蹴而就,而是基于对大数据的认知不断深入,随 着市场不断发展、技术不断成熟、问题不断解决,理论认知不断提升,最终形成数 据要素这一概念,并于 2019 年党的十九届四中全会中,明确提出了“健全劳动、资 本、土地、知识、技术、管理、数据等生产要素由市场评价贡献、按贡献决定报酬 的机制”,从而正式认定了数据的经济要素价值。
我国对于数据生产要素的重视缘于我国在数据要素方面具有资源禀赋,同时数据要 素对于我国经济发展和治理能力现代化都具有不可替代的作用。
数据要素价值化三阶段构成了数据要素市场,数据要素市场的构成就是把数据要素 价值化的过程。从产业链环节看,我们将数据要素市场根据过程分为数据采集、数据存储、数据加 工、数据交易流通、数据分析应用和数据资产证券化几个部分。
2.4.1.数据采集
数据加工包含数据清洗、数据标注、数据审核等,本质上是提升数据资源质量的过 程,数据资源的质量越高其价值越大。具体分环节看:数据清洗:基本已经成为各企业标配的能力,基本在数据收集存储环节就已经完成;数据标注:由于非结构化 数据占比越来越大,对于数据标注行业的需求稳定提升,已经形成一个稳定成长的 行业,目前市场规模在 50 亿元人民币以上,每年保持 20%以上增长。
数据流通环节还可以细分为数据确权、数据估值&定价以及数据交易等几个阶段。数据确权:发展最慢难度最高的环节,总体趋势是淡化确权 数据确权是数据要素行业中连接上下游最关键的环节,同时也是目前发展最慢、难 度最高的环节,主要原因在于:1. 法律地位不清晰:《民法总则》、《物权法》、《知识产权法》、《反不当竞争法》等 未明确数据法律地位;2. 源头难确认:数据的初始来源复杂传播链条长且处理后信息丢失,经常无法确 定最初来源;
3. 追责成本高:数据复制简单迅速且难以追踪,及时发现被侵权也很难维权;对于数据如何确权,市场一直处于争论期。目前主流态度逐渐清晰,即在产业/政策 萌芽期,暂时搁置“数据归谁所有“这一难题,从数据的使用权利、流通权利、收 益权利层面确定归属,引入合规和登记公正体系,保证交易合法合规。这一环节中, 未来主要参与玩家可能是律师事务所、数据交易所、区块链等新玩家。
数据估值&定价:当前一事一议,未来多种定价与估值方式结合 由于数据具有多种独特性质,导致其定价非常困难,一直是学术界和产业界的难题:1. 成本定价:边际成本极低,无法根据初始成本或者预估成本定价;2. 效用定价:使用之前效果不清晰,使用之后难以重新收费;3. 体验定价:使用体验和最终效果无关;4. 质量定价:数据质量难以标准化;5. 防套利定价:技术难度太高,无法实时实现。
数据交易:经过接近 10 年的发展,已经走过了萌芽-爆发-幻灭期,目前是当前 地方政府争夺最激烈的市场 数据交易市场经过接近 10 年的发展,已经走过了萌芽-爆发-幻灭期,伴随着数据要 素重要性逐渐提升,由政府主导的数据交易市场重新蓬勃发展。目前来看数据交易 市场分类方式很多,目前发展争夺最激烈的是合法场内交易,发展最快的是合法场 外交易。数据交易所作为地方政府参与数据要素的主要形式,已经成为目前各地方政府争夺 最激烈的市场;但从草根调研看,各地的数据交易市场仍旧处于探索阶段,普遍交 易额不大。
2.4.6.数据资产证券化
数据资本化是指数据被打包成金融产品进入资本市场,具体形式包括但不限于数据 质押、数据 ABS、数据权益,目前仍旧处于点状探索阶段,除了数据权益外没有特 别完善的理论和实践体系。目前数据入表(资产负债表)是学术界和产业界最关注 的政策指引方向,一旦数据入表政策公布,可能会引起整个资本市场的规则重估。
综上,结合产业链各参与者地位,我们可以得到数据要素市场产业链全景图。综合 看来,在政策的大力推动和各方面参与者的不懈努力下,我国数据要素市场体系已 经初步形成,但我国数据要素交易市场仍处于发展早期阶段,未来的空间、格局仍 在不断变化中。根据我们的推演,未来数据流通速度加快,受益最大的是数据供需 方、空间最大的是提供各类服务的数据服务商、而目前最火热的仍旧是数据交易所 行业。
2.5.数据要素市场规模:灰黑产千亿规模,正规化后前景广阔
中国数据要素市场目前在千亿左右规模;但 这一数字非常保守,原因在于在市场空间计算时主要是数据采集、数据存储、数据 加工等现有可测量的环节,数据交易环节和规模最大的数据分析应用环节没有纳入;仅仅数据交易环节,国内每年黑灰产市场规模就在千亿以上。目前数据要素行业刚 刚处在正规化发展的初期,未来各行各业都会从中显著受益,当下去纠结市场空间 多大意义不大,更多应该以发展的视角看待这一成长行业。
3.数据要素行业存在的问题和边际变化
确权难:a) 数据所有权分类:数据权分为国家主权、人格权和财产权三个维度;《数据 安全法》和《个人信息保护法》解决了数据国家主权和人格权的问题,但 财产权问题尚未在法律层面有明确定义;b) 人格权追溯困难:个人对数据有知情权、修改权、删除权、查询权,但在 实际应用中,个人维权成本非常高,维权手段非常少; c) 财产权仍需讨论:数据的特殊性质导致其在财产上的归属、追溯、增值等 行为很难确定,因此如何定义财产相关的归属、分配等仍旧需要探索。
定价难:a) 传统定价方式不适用:数据具有初始成本固定、边际成本极低、产权确定 困难、来源多维、结构多样的特点,传统经济学中的各种定价方法都难以 使用;b) 对于买卖方价值差异大:数据买卖双方对数据价值评估存在“双向不确定 性”,双方对于同一数据的价值评估差距可能会非常大,因此对于同一数据 的估值也存在比较大差异;c) 可参考经验少:目前数据交易市场规模小、案例少、公开少,也难以形成 成型的定价体系。
3.2.政策变化:顶层+地方法规/政策不断推动,建立具体部门统筹监管规划
3.2.1.法律法规体系逐渐成型,参与的政企有法可依
技术的发展一方面从需求端增加了对数据的需求,另一方面从供给端解决了双方的 矛盾。从需求端看,AI 算法已经基本得到普及,各行各业都在利用 AI 进行自身业务和流 程的改造;AI 需要大量数据进行模型生成和结果迭代,对于数据,尤其是多源/连续 数据的需求越来越多。从供给端看,区块链+隐私计算等技术的发展,使得数据确权、数据可用不可见成为 了可能,为数据要素流通提供了坚实的技术保障。数据流通的供需矛盾在于需求端希望数据越翔实、越接近原始数据越好;而供给端 希望数据越简洁、越不暴露底层数据越好。区块链能够解决数据确权、数据交易过 程确认问题;隐私计算能够解决数据泄露担忧、数据隐私担忧、数据质量担忧。
隐私计算,广义上是指带有隐私机密保护的计算系统与技术,能够在不泄露原始数 据的前提下对数据进行采集、加工、分析、处理与验证。目前主流技术分为安全多 方计算平台(MPC)、联邦学习(FL)、可信计算环境(TEE)。隐私计算从 20 世纪 80 年代发展到今天,已经基本成熟,目前的问题是如何通过软 硬件协同、算法优化等方式提升系统性能,尽量接近明文计算。
隐私计算目前看来是数据要素市场发展繁荣必不可少的技术手段,也因此吸引了非 常多来源的玩家加入,当前已经形成巨头和初创公司共同逐鹿的市场环境。在政策 推进、技术成熟的背景下,隐私计算市场规模急剧扩大,据统计,我国 2022 年上半 年隐私计算领域的招投标项目总金额已经接近 2019-2021 年三年招投标总额,预计 全年同比几倍增长。
3.4.1.金融行业
金融行业是数据要素应用最活跃的行业,多维数据对于金融机构提升风险评估能力, 从而实现普惠金融具有非常重要的左右。过往中小企业以及个人实际贷款利率难以 下降的一大原因就是无法通过传统数据(资产规模、经营流水)证明自身实力从而 实现信贷增信;但是包括税务、社保、海关、电力等一系列政务公共数据能够有效 提升金融机构对相关信贷主体的评估能力,从而实现普惠金融,因此这一方向也是 目前政务数据开放最主要的方向。数据要素不仅在普惠金融方面助力金融机构,同时对于其内部其他业务也有显著提 升。在数据要素基础设施、基础技术逐渐完善后,金融机构可以更好地与其他机构 合作进行数据分析,从而提升自身业务效率。
3.4.2.医疗行业
我们认为医药、医疗、医保会是下一个即将爆发发展的行业。过去,数据来源、数 据安全是各医疗相关机构一大难题,未来通过数据交易、隐私计算等手段能够促进 全行业效率提升.
4.新环节&新产业&新价值
以政府为代表的公共数据是数据领域最大的金矿,占到总数据体量的 80%左右,但 受制于体制原因和政策原因,一直无法得到充分开放和利用,目前是政策推动的重 点。我们认为由于政府数据特殊性,未来大概率采用地方国资公司代理的模式做开 放共享,地方国资大数据公司会成为政务开放过程中最确定的受益者。成立地方国资大数据公司的原因我们认为有以下三点:法理依据:公共数据大部分来源于公民信息或日常生产生活活动,追溯穿透后 属于公民私人数据的集合;国资委作为国有资本代表出资成立全资大数据公司 代理运营公共数据,法理上瑕疵不大;
2015 年至 2017 年,第一波“爆发期”:自 2015 年贵阳大数据交易所正式挂牌运营以 来,这一期间,先后有近 20 家数据交易所成立;但由于缺少强力法律保障和独特优 势,无法打败数据灰产交易,部分交易所已经处于名存实亡状态;
4.2.2.数据交易所2.0阶段
2020 年之后,北京和上海等地成立了新一批数据交易所,且未来还会有多个交易所 准备落地。2.0 阶段数据交易所更注重国有股权和生态建设,目前处于蓬勃发展和活 跃探索阶段。数据交易所力求提供贯穿交易前中后流程的多维服务,但目前更多提供类黄页+背 书功能。
4.3.数据服务商:数据要素特征决定了生态伙伴的必要性,未来巨大空间等待发掘
5.未来发展展望&标的梳理
我们认为数据要素行业仍旧处在政策密集推进的阶段,相关政策会推动治理体系不 断完善资产要素化流程。其中可能包括:数据产权:从立法角度推动或者模糊化数据的所有权收益权,解除核心风险顾 虑;数据评估:完善数据资产价值评估体系;数据入表:数据以资产形式计入资产负债表,并调整相应资本政策;数据财政:地方政府探索“数据出让金”、“数据补助“制度;数据税收:民生数据应用抵税、数据采购费用纳入研发费用、平台企业征收数 据税;数据金融:公民企业数据贷款、数据入股、创新金融服务。同时还可能有的一些发展情况包括数据要素经营交易的标杆案例落地、权责逐渐清 晰以及收益不断体现。
文章来源于未来智库